حلقه خودریختی های مدول های کوهمولوژی موضعی

thesis
abstract

فرض کنید rحلقه نوتری و جابجایی و aیک ایده ال سره از حلقه ی rباشد.همچنینra n:=gradeدراین صورت نشان میدهیم endr(hna(r)?extnr(hna(r),r).همچنین ثابت میکنیم که برای عدد صحیح غیر منفی nبه طوری که برای هر i?n ،0=hia(r) باشد،اگر برای هر i>0 وa?zوextir(rz,r)=0آنگاه endr(hna(r)تصویر همریخت حلقه ی rاست که rzحلقه ی کسرهای rنسبت به زیر مجموعه ی بسته ی ضربی{zj|j?0}ازrمی باشد.علاوه بر این اگر برای هرa ?z داشته باشیم homr(rz,r)آنگاه همریختی حلقه ای کانونی ??:r?endr(hna(r)یکریختی است.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

آخرین مدول های کوهمولوژی موضعی و حلقه های کاتنری

فرض کنیم ( r , m) حلقه ای موضعی و نوتری و i ایده آلی از r باشد. همچنین فرض کنیم m یک r–مدول با تولید متناهی از بعد d باشد.d-امین کوهمولوژی موضعی m نسبت به i را با علامت (h_i^d(m نشان می دهیم.با توجه به دوگان ماتلیس، واضح است که اگر r کامل و p ایده آل اولی از r باشد کهann_r(h_i^d(m))?p، آنگاه خاصییت ann_r(0:_{h_i^d(m)}p)=p برقرار است. به هرحال این خاصیت درحالت کلی برقرار نیست. دراین پایان نامه...

15 صفحه اول

صفر شدن آخرین مدول کوهمولوژی موضعی روی حلقه های نوتری

فرض کنیم r یک حلقه ی نوتری که لزوما موضعی نیست و m یک r مدول متناهیا تولید شده با بعد متناهی d باشد. همچنین فرض کنیم a یک ایده آل r و m اشتراک همه ی ایده آلهای اول p باشد به طوری که ??. در این صورت نشان می دهیم : ؟؟ در آن برای یک r مدول آرتینی a قرار می دهیم : ؟؟؟ بعنوان یک نتیجه ثابت می شود که برای هر ایده آل aاز r فقط تعداد متناهی آخرین مدول کوهمولوژی موضعی he(m) غیر ایزومورفیک وجود دارد ک...

15 صفحه اول

مدول های کوهمولوژی موضعی تاپ

فرض کنیم(r,m) یک حلقه موضعی نوتری ،i یک ایده آل r و m یک r-مدول متناهی مولد باشد با dimm=d .واضح است که اگرr کامل باشد بنا به دوگان ماتلیس،آن گاه مدول کوهمولوژی موضعی h_i^d (m) ویژگی زیر را دارد: به ازای هر ایده آل اول ??"ann" ?_"r" "h" ?_"i" ^"d" ("m" )?p داشته باشیم: ?ann?_r (0:_(h_i^d (m) ) p)=p (*) علاوه براین، مدول کوهمولوژی موضعیh_i^d (m) در حالت کلی ویژگی(*) را ندارد.در این پایان نامه ...

خواص متناهی بودن مدول های کوهمولوژی موضعی روی حلقه های موضعی کوهن-مکولی

فرض کنیم r یک حلقه موضعی کوهن-مکولی شامل میدان k باشد و i?r ایده آلی باشد که به توسط چندجمله ای هایی برحسب دستگاهی پارامتری از r با ضرایب در k تولید شده است. در این پایان نامه ثابت شده است که تمامی اعداد باس مدول های کوهمولوژی موضعی به شرط آن که میدان باقی مانده روی k تفکیک پذیر باشد، متناهی اند. همچنین ثابت شده که تحت شرایط بالا، مجموعه ایده آل های اول وابسته به چنین مدول های کوهمولوژی موضعی ...

هم متناهی بودن مدول های کوهمولوژی موضعی

در این رساله به بحث روی مدول های کوهمولوژی میپردازیم .و نشان میدهیم که تحت شرایط خاص ایدهال های اول وابسته i-امین مدول کوهمولوژی متناهی است

15 صفحه اول

ساختار حلقه ی درون ریختی یک مدول کوهمولوژی موضعی مشخص

فرض کنیم (r,m) یک حلقه ی گورنشنتاین n بعدی است، برای یک ایده آل i?r با ارتفاع c ، حلقه ی درون ریختی b=?hom?_r (h_i^c (r),h_i^c (r) ) را مورد بررسی قرار می دهیم. می توان نشان داد که b یک حلقه ی جابجایی است. در حالتی که (r,m) یک حلقه ی موضعی منظم شامل یک میدان باشد، b یک حلقه ی کوهن مکولی است. ویژگی های این حلقه وابسته به بزرگترین عدد لیوبزنیک l=?dim?_k ?ext?_r^d (k,h_i^c (r) ) است که d=dim??r?i?...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023